
GenePattern
Programmer’s Guide

Software Copyright

The Broad Institute
SOFTWARE COPYRIGHT NOTICE AGREEMENT

This software and its documentation are copyright 2006 by the Broad Institute/Massachusetts Institute of Technology.
All rights are reserved.

This software is supplied without any warranty or guaranteed support whatsoever. Neither the Broad Institute nor MIT
can be responsible for its use, misuse, or functionality.

 2

 3

GenePattern provides access to a broad array of computational methods used to analyze genomic data. Its
extendable architecture makes it easy for computational biologists to add analysis and visualization modules, which
ensures that GenePattern users have access to new computational methods on a regular basis.

If you are new to GenePattern, begin with the basics:

● The Concepts Guide provides a brief introduction to GenePattern: its primary objects (modules, pipelines, suites)
and its client-server architecture. All other GenePattern documentation assumes that you are familiar with these
concepts.

● The Tutorial provides a hands-on introduction to the GenePattern Web Client and Desktop Client.

This guide assumes that you are a programmer and familiar with GenePattern. As a programmer, you generally work
with GenePattern in one of two ways:

● Creating GenePattern modules. Each GenePattern module invokes a program that executes a desired
function. You can use any language to write a program that can then be invoked as a GenePattern module. For
more information, see the following sections of this guide:

▪ Writing Modules for GenePattern: This section provides tips for writing code that will be invoked as a
GenePattern module.

▪ Writing MATLAB Modules for GenePattern: This section describes how to address MATLAB licensing and
distribution issues. Read this section if you are writing MATLAB code that will be invoked as a GenePattern
module.

● Accessing GenePattern from Java, MATLAB, or R. GenePattern libraries for these three programming
environments make it easy for your applications to run GenePattern modules and retrieve analysis results. Each
library supports arbitrary scripting, access to GenePattern modules via function calls, and development of new
methodologies that combine modules in arbitrarily complex combinations. For more information, see the
following sections of this guide:

▪ Using GenePattern from Java

▪ Using GenePattern from MATLAB

▪ Using GenePattern from R

 4

Writing Modules for GenePattern
Creating a GenePattern module is a two-step process:

1. Use the guidelines provided below to write a program that executes the desired function.

2. Use the GenePattern Web Client to create a GenePattern module that invokes the program that you have
written. For more information, see Creating Modules in the GenePattern Web Client Guide.

When writing a program that will be run as a GenePattern module, keep in mind the following:

● Use the programming language of your choice. You can write the program in the language of your choice.
You can use a compiled language, such as C, to create an executable or you can use a scripting language, such
as Perl, to create a script that is run by an interpreter.

● Write messages to standard error and standard output. GenePattern modules are run on the server. The
user provides arguments and retrieves results, but does not interact during module execution. If necessary, write
normal output to standard output (stdout) and error messages to standard error (stderr); avoid writing error
messages to standard output. GenePattern captures stdout and stderr in log files, which can be retrieved by the
user.

● Write output files to the current working directory. When a module completes, GenePattern displays the
output files that are in the current working directory. Files written to other locations are not displayed as module
output files (otherwise known as analysis result files).

● Read module data files from <libdir>. If your module needs to read from any data files which are part of the
module (rather than user input), it will need to know the directory where the module lives on the server; that is,
<libdir>.

● Read and write standard GenePattern file formats. When reading and writing data files, you generally want to
use the standard GenePattern file formats, as described in File Formats. This makes it easier for users to
analyze their data using a combination of GenePattern modules. If you choose to use your own unique file
formats, be aware that other GenePattern modules will not be able to read those files.

For Java, MATLAB, and R, GenePattern provides libraries that include methods for reading and writing
GenePattern files (such as res, gct, and odf files). These libraries are designed for accessing GenePattern from
the Java, MATLAB, and R environments, but are also useful when writing modules to be invoked by
GenePattern. For instructions on downloading the libraries, see Using GenePattern from Java, Using
GenePattern from MATLAB, or Using GenePattern from R.

● Use parameter flags. When designing the program and its command line, use parameter flags (for example, -f
input_file) rather than relying on parameter positions. Parameter flags allow users to build command lines with
variable numbers of arguments, which makes it easy to omit optional parameters.

When writing R code, if you have optional input parameters on the command line, you must use named rather
than positional parameters in the command line definition; for example:
input.filename=<input.filename>. If you name all of the parameters, then you can use ellipses
rather than listing the parameter names in the function definition (for example: myfunc <-
function(...)) at the expense of clarity in documenting input parameters.

● Process all parameters as strings. All command line parameters are passed to your code as strings, even if a
parameter is apparently numeric. If your code expects a numeric argument, explicitly convert the string argument
to a number; for example, as.integer(arg).

● Avoid absolute pathnames. When writing code to be used with GenePattern, avoid absolute pathnames. For
example, in perl, specify the interpreter on the command line rather than embedding the interpreter in the script;
that is, use the command line “perl myscript” rather than including ”#!/usr/bin/perl” as the first line
of the myscript.pl file.

● Avoid Windows forbidden filenames. Machines running Windows cannot accept files with the following
names, regardless of the file extension: con, prn, aux, nul, com1, com2, com3, com4, lpt1, lpt2, lpt3. For cross-
platform compatibility, avoid files with these names.

● Adapting R code. When you create a module in GenePattern, you specify the command line that invokes the
program that performs the desired function. Generally, the command line includes arguments, such as the
parameters for the algorithm and the data file to analyze. For example, the following command line invokes the
myfunc() function in the R script named myscript.R, passing a single parameter, input.filename:

<R> <libdir>myscript.R myfunc <input.filename>

 5

Calling R script from a command line is possible, but generally not useful because you cannot pass arguments to
the script. To pass arguments to your R code, create a function. For example:

myfunc <- function (input.filename)
 ... (your R-code here)

Writing MATLAB Modules for GenePattern
If you are writing MATLAB code to be invoked as a GenePattern module, follow the guidelines in Writing Modules for
GenePattern. In addition, for MATLAB code, you must address licensing and distribution issues, as described in this
section:

● Two Approaches: Direct and Compiled

● MATLAB Versions

● Adapting Your MATLAB Code

● Compiling Your MATLAB Code

● Distributing Your MATLAB Code

● Example: Deploying a Compiled MATLAB Application

Two Approaches: Direct and Compiled
You can invoke a MATLAB executable from a GenePattern module using one of two approaches: the direct approach
or the compiled approach. Following are brief descriptions of each approach, including its advantages and
disadvantages:

● Direct approach. In the direct approach, the GenePattern module directly invokes the MATLAB executable,
which executes your M-code. This approach is best suited for use on a standalone GenePattern server, where
you already have a MATLAB license and you will not redistribute the MATLAB-based GenePattern modules to
other users who do not have their own MATLAB licenses. The advantages to this approach are: it is the simplest
way to getting your M-code running on GenePattern, it can be used for any MATLAB and GenePattern supported
platform, and it allows for easier modification of the M-code files as you modify your analysis. The disadvantages
of this approach are: it requires a MATLAB license for each concurrent user on the GenePattern server machine
and, if you change platforms, you must change the command line because different platforms have different
methods of passing arguments to MATLAB.

● Compiled approach. In the compiled approach, you use the MATLAB Compiler to generate a standalone
executable; the GenePattern module then invokes that executable. The advantages to this approach are: it
allows redistribution of the module to other GenePattern users who do not have their own MATLAB license and it
can be run on a shared server without needing to get a MATLAB license for each concurrent user. The
disadvantages are: it requires you to have a MATLAB Compiler license, it can be used only on platforms
supported by the MATLAB Compiler, it must be compiled separately for each platform, and the GenePattern
server must have the MATLAB Component Runtime (MCR) installed before it can run the compiler-generated
executable.

If you are simply using your M-code on your standalone GenePattern server, the direct approach is simpler; however,
if you want to give copies of your M-code to other people or deploy your M-code on a shared GenePattern server, the
compiled approach is preferred. The compiled approach may provide slightly better performance for fast running
modules since the startup delay will be shorter, but the actual execution time will be approximately the same for either
approach.

MATLAB Versions
The instructions in this section are based on the following MATLAB versions:

● MATLAB 7.1 (part of Release 14). Earlier versions of MATLAB use a different (deprecated) mechanism for
deployment, which is not compatible with the instructions provided in this guide. For Mac OS X, these
instructions were tested using MATLAB 7.2.

● MATLAB Compiler 4.0 or later. The MATLAB Compiler is currently available on Windows, Unix, and Mac OS X;
therefore, these are the only platforms on which you may deploy a compiled MATLAB-based module. For Mac
OS X, these instructions were tested using the MATLAB Compiler 4.4.

The MATLAB Compiler generates executables only for the platform on which it is executing. For example, if you
create a MATLAB executable on Windows, the MATLAB-based module that invokes that executable can only be

 6

deployed on a GenePattern server running under Windows. Therefore, you need a MATLAB (and MATLAB
Compiler) license for each platform on which you wish to deploy your executable.

Adapting Your MATLAB Code
When you create a module in GenePattern, you specify the command line that invokes the program that performs the
desired function. Generally, the command line includes arguments, such as the parameters for the algorithm and the
data file to analyze.

Calling script M-code from a command line is possible, but generally not useful because you cannot pass arguments
to the script. To pass arguments to your M-code, create a no-return entry function to serve as the top level call into
MATLAB. The following example defines a no-return entry function that accepts two parameters:

function analyzeThis (filename, whatToWrite)
 ... (your M-code here)

Writing Modules for GenePattern provides additional guidelines for writing code that will run as a GenePattern
module.

Compiling Your MATLAB Code
If you do not plan to use the compiled M-code approach, skip this section and continue with Distributing Your
MATLAB Code.

Compiling your MATLAB M-code into a standalone executable is described in the MATLAB Compiler Documentation.
Please refer to this documentation to understand all of the options available to you. To summarize the simplest case,
from within MATLAB, at the MATLAB prompt, execute the following command:

mcc -m analyzeThis

where analyzeThis is the name of your entry function. This command generates the following files in your
$MATLAB_ROOT/work directory:

analyzeThis (Linux, Mac OS X) or
analyzeThis.exe (Windows)

Executable file

analyzeThis.ctf Component Framework file

analyzeThis.c (Linux, Windows) C language Source Code

analyzeThis.h (Linux, Windows C Language Header file

analyzeThis_main.c C language Source Code

analyzeThis_mcc_component_data.c C language Source Code

Note: To use the MATLAB compiler on Mac OS X, you must have Xcode 2.2 installed; minimally, the Developer
Tools, gcc 4.0, gcc 3.3, Mac OS X SDK, and BSD SDK. These instructions were tested using Xcode 2.2.1.

Distributing Your MATLAB Code
After writing your MATLAB code, use the GenePattern Web Client to create a GenePattern module that invokes the
code that you have written. Creating Modules in the GenePattern Web Client Guide describes how to create a
GenePattern module. This section provides supplemental information for MATLAB:

● Direct Approach Distribution

● Compiled Approach Distribution

Direct Approach Distribution
Creating Modules describes how to create a GenePattern module that invokes the code that you have written. This
section provides additional information that applies when you are directly calling the MATLAB executable from the
GenePattern module:

 7

http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/

● Windows Command Line

● Preferred Command Line

Windows Command Line
On Windows, your GenePattern module definition form can contain a simple command line that calls MATLAB with
the -r flag to execute your function; for example:

matlab -nosplash -r "analyzeThis <p1> <p2>"

This example invokes MATLAB without the splash screen (-nosplash) and directs it to execute the quoted
command, where p1 and p2 are parameters that you specify in the GenePattern module definition form and that are
passed to the MATLAB command line as Strings. MATLAB looks for the function analyzeThis on the MATLAB
path; therefore, it is not necessary to upload the function as a support file, although it is recommended.

To ensure that the GenePattern server can call the MATLAB executable, you typically add the MATLAB directory to
your PATH system environment variable. (Alternatively, you can enter the full path to the MATLAB executable on the
command line, but this makes it more difficult to deploy the module on other GenePattern servers.)

To check that MATLAB is on your path:

1. Open a DOS window.

2. Type matlab and press Enter.

If the MATLAB application starts, MATLAB is on your path.

If MATLAB is not on your path, add it:

1. Select Start>Settings>Control Panel.

2. Double-click System.

3. Select the Advanced tab.

4. Click the Environment Variables button.

5. Select or create the PATH variable.

6. Add the $MATLAB_ROOT/bin directory to the path.

Open a new DOS window and check again that MATLAB is on your path.

Preferred Command Line
On platforms other than Windows, the execution of the command line differs slightly due to variations in the Java
Virtual Machines (VMs) that GenePattern is running. If you use the simple matlab command, as described for
Windows, the Java VMs on these platforms attempt to parse and quote the command line resulting in MATLAB
generating errors in its eval function.

On these platforms, you must use a wrapper Java class to launch MATLAB. This wrapper class also works on
Windows and does not rely on the PATH variable, which makes it the preferred method for implementing the direct
approach on any platform.

To use the wrapper Java class:

1. On the GenePattern module definition form, add the runmatlab.jar file as a support file. To request a copy
of this file, send e-mail to gp-help@broad.mit.edu; alternatively, the java source code for the RunMatlab wrapper
class is included here: RunMatlab.java.

2. Write your command line as follows:

 <java> -cp <libdir>runmatlab.jar RunMatlab analyzeThis <p1> <p2>

Where analyzeThis is the name of your MATLAB entry function name and <p1> and <p2> are the
arguments to the function. The RunMatlab class ensures that the arguments are correctly written out and calls
MATLAB with the -nosplash and -nodisplay arguments.

Compiled Approach Distribution
Creating Modules describes how to create a GenePattern module that invokes the code that you have written. This
section provides additional information that applies when you are compiling your M-code into a standalone
executable and invoking that executable from the GenePattern module:

 8

mailto:gp-help@broad.mit.edu

● Preparing the GenePattern Server

● Writing the Launcher Script

● Writing the Module Command Line

● Adding Support Files

● Distribution Licensing

Preparing the GenePattern Server
To run a standalone executable generated by the MATLAB Compiler, the GenePattern server must have the
MATLAB Component Runtime (MCR) installed. This is a collection of shared libraries, which contains the runtime
code for MATLAB, that is used by the standalone application. If the GenePattern server has MATLAB installed, you
do not need to install the MCR; it is already installed.

Full details for installing the MCR can be found in the MATLAB Compiler documentation, in the section titled
“Deployng Components to Other Machines”. To summarize this documentation, on the GenePattern server machine,
you need to run the MCRInstaller:

On Windows, to run the MCRInstaller:

1. Copy <matlabroot>\toolbox\compiler\deploy\win32\MRCInstaller.exe to the server
machine.

2. Run MCRInstaller.exe.

On Linux, to run the MCRInstaller:

1. In MATLAB, at the MATLAB prompt, execute the command buildmcr.

2. Copy <matlabroot>/toolbox/compiler/deploy/MCRInstaller.zip to the server machine.

3. On the server machine, unzip MCRInstaller.zip into a directory (<mcr_root>).

4. Update the dynamic library path for the user running the GenePattern server:

setenv LD_LIBRARY_PATH
 <mcr_root>/runtime/glnx86:
 <mcr_root>/sys/os/glnx86:
 <mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:
 <mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386:
 <mcr_root>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

On Mac OS X, to run the MCRInstaller:

1. In MATLAB, at the MATLAB prompt, execute the command buildmcr.

2. Copy <matlabroot>/toolbox/compiler/deploy/MCRInstaller.zip to the server machine.

3. On the server machine, unzip MCRInstaller.zip into a directory (<mcr_root>).

4. Update the library path for the user running the GenePattern server:

setenv DYLD_LIBRARY_PATH
 <mcr_root>/<ver>/runtime/mac:
 <mcr_root>/<ver>/sys/os/mac:
 <mcr_root>/<ver>/bin/mac:
 /System/Library/Frameworks/JavaVM.framework/JavaVM:
 /System/Library/Frameworks/JavaEmbedding.framework/JavaEmbedding:
 /System/Library/Frameworks/JavaVM.framework/Libraries
setenv XAPPLRESDIR <mcr_root>/<ver>/X11/app-defaults

Writing the Launcher Script
When the MATLAB Compiler generates a standalone executable, it also generates a Component Framework (.ctf)
file. The .ctf file must be on the path when you run the standalone executable. The easiest way to address this
requirement is to create a launcher script (.bat or .sh file) that adds the .ctf file to the PATH or LIBPATH and then
runs the standalone executable.

On Windows, for example, to launch the MATLAB executable analyzeThis.exe, create a launcher script,
mllaunch.bat, that contains the following lines:

 9

http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/

set LIBDIR=%1
set PATH=%LIBDIR%;%PATH%
analyzeThis %2 %3

On Linux, for example, to launch the MATLAB executable analyzeThis.exe, create a launcher script,
mllaunch.sh, that contains the following lines:

 #!/bin/csh
 export MCR_ROOT=<path where you installed the files from MCRInstaller.zip>
 export LD_LIBRARY_PATH=$1:$MCR_ROOT/runtime/glnx86:$MCR_ROOT/sys/os/glnx86:\
 $MCR_ROOT/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:\
 $MCR_ROOT/sys/java/jre/glnx86/jre1.4.2/lib/i386:\
 $MCR_ROOT/sys/opengl/lib/glnx86

 export PATH=$1:$PATH
 chmod a+x $1/analyzeThis
 analyzeThis $2 $3

The chmod line sets the executable permission on the executable file; by default, the GenePattern server does not
set this permission for uploaded files.

On Mac OS X, for example, to launch the MATLAB executable analyzeThis.exe, create a launcher script,
mllaunch.sh, that contains the following lines:

#!/bin/sh
export MCR_ROOT=/Volumes/os9/gpserv
export LD_LIBRARY_PATH=$1:/Volumes/os9/matlab7.2/sys/os/mac:
 /Volumes/os9/matlab7.2/bin/mac/
export DYLD_LIBRARY_PATH=$LD_LIBRARY_PATH
export PATH=$1:$PATH
chmod a+x $1/writeToFile
writeToFile $2 "$3"

The chmod line sets the executable permission on the executable file; by default, the GenePattern server does not
set this permission for uploaded files.

Writing the Module Command Line
On the GenePattern module definition form, write a command line calls the launcher script, passing the <libdir>
parameter as the first argument (so that it can be added to the path).

On Windows, the following command line calls the launcher script, mllaunch.bat:

 <libdir>mllaunch.bat <libdir> <param1> <param2>

On Linux or Mac OS X, the following command line calls the launcher script, mllaunch.sh:

 sh <libdir>mllaunch.sh <libdir> <param1> <param2>

In both command lines, the first <libdir> sets the path to the mllaunch script. The second <libdir> is passed as the
first argument to the script so that the script can add this directory to the appropriate environment variables. The
<param1> and <param2> variables are parameters to the MATLAB application, which you define in the module
definition form and specify in the command line as usual.

Adding Support Files
For the compiled approach, you must specify at least two support files for the MATLAB application: the executable file
and .ctf file. If your application requires additional files for its execution, also add those files as support files.

Distribution Licensing
Should you choose to distribute your MATLAB based module to others, you must ensure you are in compliance with
the MATLAB licensing agreement:

http://www.mathworks.com/company/aboutus/policies_statements/agreement.pdf

Following are a few key points for GenePattern developers:

● You may not distribute code that uses MATLAB and that competes with any of The MathWorks products.

● You may not modify or remove any license file included with the MCR Libraries.

 10

● Users of your GenePattern modules must be made aware of the MATLAB license agreement in documentation
and accept it before installing your modules.

● Your MATLAB application must have an about box or equivalent "visible" location that includes the legend
"MATLAB copyright 1984-yyyy the MathWorks Inc.", where yyyy is the year you released your module.

Please refer to the MATLAB licensing agreement for exact details. You are responsible for reviewing and complying
with the MATLAB software license. The above summary does not exempt you from this responsibility.

Example: Deploying a Compiled MATLAB Application
This section provides a step-by-step example of deploying a simple M-file application as a GenePattern module on a
GenePattern server. Where the instructions are platform specific, the example shows instructions for Windows, Linux,
and Mac OS X.

Writing the M-file
The first step is writing the MATLAB M-file that you want to share. For this example, write a simple application that
takes a filename and a String and writes the String out to a file with the given name. This application consists of the
following lines:

% write the variable whatToWrite to a file called filename in the current
directory
 fid = fopen(filename,'w');
 fprintf(fid,'#writing to a file\n\n');
 fprintf(fid,whatToWrite);
 fclose(fid);

Adapting the M-file
To call the M-file from the command line and pass it parameters, you must turn this script into a no-return function. To
do this, add a function definition line at the start of the M-file and save the file using the name of the function (for
example, writeToFile.m).

function writeToFile(filename, whatToWrite)
% write the parameter whatToWrite to a file called filename in the current
directory
 fid = fopen(filename,'w');
 fprintf(fid,'#writing to a file\n\n');
 fprintf(fid,whatToWrite);
 fclose(fid);

Compile the M-file
Within the MATLAB environment, call the MATLAB Compiler to convert this function into an application:

>> mcc -m writeToFile

Within the current working directory, this creates a number of files, including the following:

● writeToFile.exe (Windows) or
writeToFile (Linux, Mac OS X)

● writeToFile.ctf

Note: To use the MATLAB compiler on Mac OS X, you must have Xcode 2.2 installed; minimally, the Developer
Tools, gcc 4.0, gcc 3.3, Mac OS X SDK, and BSD SDK. These instructions were tested using Xcode 2.2.1.

Prepare the GenePattern Server
Install the MATLAB Component Runtime (MCR) on the GenePattern server, if you have not done so already. If the
GenePattern server has MATLAB installed, it also has the MCR installed.

Windows
To install the MCR:

1. Copy <matlabroot>\toolbox\compiler\deploy\win32\MRCInstaller.exe to the
GenePattern server machine.

 11

2. At the DOS prompt, or from Windows Explorer, run the following:

 MCRInstaller.exe

Linux or Mac OS X
To install the MCR:

1. Within the MATLAB environment, create the MCRInstaller zip file:

>> buildmcr mcrdir

This creates a directory, mcrdir, beneath the current working directory and creates a file within that directory
called MCRInstaller.zip.

2. Copy the zip file to your GenePattern server (if it is a different machine) and install it into a directory. For
example, add a directory, matlab, under the GenePattern server directory and install the library files in
MCRInstaller.zip into that directory:

cd GenePatternServer
mkdir matlab
cd matlab
cp <path to mcrinstaller.zip>MCRInstaller.zip .
unzip MCRInstaller.zip

Create the Launcher Script
Create the launcher script that sets the environment variables and then calls the MATLAB application.

Windows
Create the launcher script as a batch file that sets the PATH variable for the environment and then calls the MATLAB
application. To do so, in a text editor, create the following mllaunch.bat file:

set LIBDIR=%1
set PATH=%LIBDIR%;%PATH%
writeToFile %2 %3

Linux
Create the launcher script as an .sh file that sets the PATH and LD_LIBRARY_PATH variables for the environment,
ensures that the application is executable, and then calls the MATLAB application. To do so, in a text editor, create
the following mllaunch.sh file:

#!/bin/csh
export MCRROOT=/home/username/GenePatternServer/matlab/v70
export
LD_LIBRARY_PATH=$1:$MCRROOT/runtime/glnx86:$MCRROOT/sys/os/glnx86:$MCRROOT/sys
/java/jre/glnx86/jre1.4.2/lib/i386/client:$MCRROOT/sys/java/jre/glnx86/jre1.4.
2/lib/i386:$MCRROOT/sys/opengl/lib/glnx86
export PATH=$1:$PATH
chmod a+x $1/testTwo
writeToFile $2 $3

Note that the MCR_ROOT variable is set to the v70 directory, which you created by unzipping
MCRInstaller.zip.

Mac OS X
Create the launcher script as an .sh file that sets the LD_LIBRARY_PATH and DYLD_LIBRARY_PATH variables for
the environment, ensures that the application is executable, and then calls the MATLAB application. To do so, in a
text editor, create the following mllaunch.sh file:

#!/bin/sh
export MCR_ROOT=/Volumes/os9/gpserv
export LD_LIBRARY_PATH=$1:/Volumes/os9/matlab7.2/sys/os/mac:
 /Volumes/os9/matlab7.2/bin/mac/
export DYLD_LIBRARY_PATH=$LD_LIBRARY_PATH
export PATH=$1:$PATH

 12

chmod a+x $1/writeToFile
writeToFile $2 "$3"

Create the GenePattern Module
In the GenePattern Web Client, create a module that executes the launcher script.

Windows
● For the command line, enter the following:

sh <libdir>mllaunch.bat <libdir> <fname> <txt>

● Define two parameters:

▪ <fname> for the output file name

▪ <txt> for the text to write to the file

● Include the following support files:

▪ mllaunch.bat

▪ whatToWrite.exe

▪ whatToWrite.ctf

Linux or Mac OS X
● For the command line, enter the following:

sh <libdir>mllaunch.sh <libdir> <fname> <txt>

● Define two parameters:

▪ <fname> for the output file name

▪ <txt> for the text to write to the file

● Include the following support files:

▪ mllaunch.sh

▪ whatToWrite

▪ whatToWrite.ctf

Save the Module and Test It
Save the module and execute it. The module should create two files:

● A stdout file that contains execution information.

● A file with the name and text that you specified.

Debugging (Linux Only)
If the following error appears in the stdout file, you have not correctly set the path to the libraries that you installed
from MCRInstaller.zip:

error while loading shared libraries: libmwmclmcrrt.so.7.0: cannot open shared
object file: No such file or directory

Double check the path. If it is correct, you may be using a different Unix shell than the one used in this example.
Check that the mllaunch.sh file uses the correct command (export in this example) to set PATH and
LD_LIBRARY_PATH.

Using GenePattern from Java
Using Java as a GenePattern client allows you to run GenePattern modules and visualizers from within a Java
application. This section describes how you can use the GenePattern Java library to run GenePattern analyses as
easily as calling a routine. It contains the following topics:

● Getting Started in Java

● GenePattern Java Library
 13

● Running a Java Program

● Using LSIDs from Java

Getting Started in Java
If you are not familiar with Java, see the http://java.sun.com website, which provides downloadable programs,
samples, tutorials, and book suggestions.

GenePattern Java Library
The GenePattern Java library allows you to invoke a GenePattern module as if it were a local Java method running
on your client and to get back from the module a list of result files. A zip file containing the Java library (and Javadoc
that describes the API for accessing the server and running modules) is available on your GenePattern server.

To download the GenePattern Java library to your computer:

1. Start the GenePattern Web Client.

2. Select Downloads>Programming Libraries.

3. Under Java, click zip to download the zip file for the GenePattern Java library.

4. After downloading the zip file, unzip it into the directory where you will be doing your Java development.

Running a Java Program
This section explores a simple Java application that preprocesses a dataset and displays it using the
HeatMapViewer. The included code can be copied and pasted into your Java program so that you can try it out,
modify it, and create your own solutions. The full source code of the sample application is available here.

The first statements in the application initialize various settings, which you must do once in every application that
accesses GenePattern. You will need to customize the italicized GenePattern server URL and GenePattern user
name (typically, your e-mail address) with values appropriate for your GenePattern server.

import org.genepattern.data.expr.ExpressionData;

import org.genepattern.client.GPServer;

import org.genepattern.webservice.JobResult;

import org.genepattern.webservice.Parameter;

import org.genepattern.io.IOUtil;

import java.io.File;

public class MyProgram {

 public static void main(String[] args)

 throws Exception {

 GPServer gpServer=new GPServer("http://localhost:8080",

 "your email address");

After initializing the required settings, the application runs the PreprocessDataset module to preprocess a dataset.
This example references the dataset using a publicly-accessible URL, but a filename would be equally valid. When
you invoke the runAnalysis method, the GenePattern library invokes the appropriate module on the server,
passing all of the input parameters and input files. Control returns to your application when the module completes.
(To run a module asynchronously, invoke the runAnalysis method in a separate thread.)

 String inputDataset=

 "ftp://ftp.broad.mit.edu/pub/genepattern/all_aml/all_aml_train.res";

 JobResult preprocess=gpServer.runAnalysis("PreprocessDataset",

 new Parameter[] {

 14

http://java.sun.com/

 new Parameter("input.filename", inputDataset)

 });

When the module completes, you can query the JobResult object for an array of filenames that are the output
from the module. You can download the result files or leave them on the server and refer to them by URL. Referring
to result files by URL is especially useful for intermediate results. In this example, the JobResult object named
preprocess contains a list of filenames (of length 1, in this case), which the application displays in a heat map:

 // view results in a HeatMapViewer visualizer

 gpServer.runVisualizer("HeatMapViewer",

 new Parameter[] {

 new Parameter("dataset.filename", preprocess.getURL(0).toString())

 });

The last statements in the application download the preprocessed data and load it into a matrix for further analysis:

 String downloadDirName=String.valueOf(preprocess.getJobNumber());

 // download result files

 File[] outputFiles = preprocess.downloadFiles(downloadDirName);

 // load data into matrix for further manipulation

 ExpressionData expressionData=

 IOUtil.readExpressionData(outputFiles[0].getPath());

 }

}

You can combine GenePattern analyses with any capabilities that the Java environment has to offer. Use Java's 2-D
and 3-D graphics libraries to create graphic output, or summarize and report on the data using your own code. The
basic idea to remember is that GenePattern modules create result files and those files are available to the Java
application for processing.

For more information:

● See the Modules page for a list of the GenePattern modules, with links to their documentation.

● Use the Desktop Client or Web Client to generate the Java code required to run a module or pipeline:

1. Select a module (or pipeline). The client displays the parameters for the module (pipeline).

2. Optionally, enter the parameter values that you want to use.

3. Use the View Code or Generate Code field (at the bottom of the form) to display the Java code required to
execute this module/pipeline with these parameters.

Using LSIDs from Java
Life Science Identifiers (LSIDs) can be used instead of module names to identify modules for GenePattern to run. An
LSID may be submitted in place of the module name in the methods runAnalysis and runVisualizer. When
an LSID is provided that does not include a version, the latest available version of the module identified by the LSID
will be used. If a module name is supplied, the latest version of the module with the nearest authority is selected. The
nearest authority is the first match in the sequence: local authority, Broad authority, other authority.

If you are unfamiliar with LSIDs and GenePattern versioning, see the Concepts Guide.

Using GenePattern from MATLAB
Using MATLAB as a GenePattern client allows you to run GenePattern modules and to manipulate and visualize the
results in a powerful, commercial technical computing application that works on most major platforms. Using
GenePattern allows you to invoke methods written in many other languages without having to worry about how to
launch them. This section describes how you can use the GenePattern MATLAB library to run GenePattern analyses:

● Getting Started in MATLAB

● GenePattern MATLAB Library
 15

http://www.broad.mit.edu/cancer/software/genepattern/doc/modules/

● Running a MATLAB Program

● Using LSIDs from MATLAB

Getting Started in MATLAB
Resources and documentation for MATLAB are available at http://www.mathworks.com/.

GenePattern MATLAB Library
The GenePattern MATLAB library allows you to invoke a GenePattern module as if it were a local MATLAB function
running on your client and to get back from the module a list of result files. A zip file containing the MATLAB library is
available on your GenePattern server.

To download the GenePattern MATLAB library to your computer:

1. Start the GenePattern Web Client.

2. Select Downloads>Programming Libraries.

3. Under MATLAB, click zip to download the zip file for the GenePattern MATLAB library.

4. After downloading the zip file, unzip it into your MATLAB7/toolboxes directory. If you do not have permission
to put files in that directory, unzip into any other directory.

5. After downloading and unzipping the files, add the directories to your MATLAB path:

1. At a MATLAB prompt, open the pathtool:

 >>pathtool

2. Use the MATLAB pathtool to add the GenePatternServer and GenePatternFileSupport
directories, with subfolders, to the MATLAB search path.

Note: MATLAB 7.0.4 (R14SP2) and later use Java Virtual Machine (JVM) 1.5. If you are using an earlier version of
MATLAB, you must change the JVM that MATLAB is using to JVM 1.5. For instructions, see
http://www.mathworks.com/support/solutions/data/1-1812J.html?solution=1-1812J.

Running a MATLAB Program
This section explores a simple MATLAB program that runs a module, displays the resulting output, and loads it into a
MATLAB matrix for further analysis. The included code can be copied and pasted into your MATLAB client so that
you can try it out, modify it, and create your own solutions.

The first statements in the application initialize various settings, which you must do once in every application that
accesses GenePattern. You will need to customize the italicized GenePattern server URL and GenePattern user
name (typically, your e-mail address) with values appropriate for your GenePattern server.

% Create a GenePattern server proxy instance
gp = GenePatternServer('http://localhost:8080','my.email@my.domain');

After initializing the required settings, the application runs the TransposeDataset module to transpose a dataset. This
example references the dataset using a publicly-accessible URL, but a filename would be equally valid. As shown
below, you can call the GenePattern methods directly or by calling the runAnalysis method. When you call a
GenePattern method, such as TransposeDataset, the GenePattern library invokes the module on the server,
passing all of the input parameters and input files. Control returns to your application when the module completes.
(To run a module asynchronously, invoke the method in a separate thread.)

% input dataset for transpose operation
params.output_file_name = 'transposed.out'
params.input_filename='http://www.broad.mit.edu/mpr/publications/projects/Leuk
emia/
ALL_vs_AML_train_set_38_sorted.res'

% transpose the dataset
transposeResult = gp.TransposeDataset(params)
% alternate call to transpose the dataset
transposeResult = runAnalysis(gp, 'TransposeDataset', params)

When the module completes, it returns a MATLAB structure that contains a list of filenames that are the output from
the module. In this example, transposeResult is a structure with a list of filenames (of length 1, in this case).

 16

http://www.mathworks.com/
http://www.mathworks.com/support/solutions/data/1-1812J.html?solution=1-1812J

The application displays the results in a file viewer window and also loads them into a matrix so that further
manipulation can be performed:

% display the transposed results
edit 'transposed.out.odf'

% now read the output into a matrix
% so we can do further manipulation in MATLAB
myData = loadGenePatternExpressionFile('transposed.out.odf')

You can combine GenePattern analyses with all of the rich functionality of MATLAB. For example, you can use
MATLAB's plotting methods to create graphic output, save modified matrices to files using save, or summarize and
report on the data using your own code. The basic idea to remember is that GenePattern modules create result files
and those files are available to the MATLAB client for processing.

For a list of the GenePattern modules available on your server, run the listMethods function on your
GenePatternServer object. To view the names of the input parameters for a module, use the
describeMethod function on your GenePatternServer object, passing it the module name.

% display the available GenePattern modules
listMethods(gp)

% now look at the parameters for the TransposeDataset module
describeMethod(gp, 'TransposeDataset')

Alternatively, to get the parameters with their default values filled in, use the getMethodParameters function of
the GenePatternServer object. This returns a MATLAB structure with named elements for each parameter,
filled in with the default value if one exists. After filling in the missing parameters and overriding defaults if desired,
this structure can then be passed on to the runAnalysis method.

% display the available GenePattern modules
params2 = getMethodParameters(gp, 'TransposeDataset')
params2.input_filename='http://www.broad.mit.edu/mpr/publications/projects/Leu
kemia/ALL_vs_AML_train_set_38_sorted.res'

% transpose the dataset
transposeResult = gp.TransposeDataset(params2)

The GenePattern MATLAB library also has convenience methods to read and write GenePattern files (such as res,
gct, and odf files). Even if you choose not to look in the library, you can extend the techniques shown above to
implement your own analyses.

For more information:

● See the Modules page for a list of the GenePattern modules, with links to their documentation.

● Use the Desktop Client or Web Client to generate the MATLAB code required to run a module or pipeline:

1. Select a module (or pipeline). The client displays the parameters for the module (pipeline).

2. Optionally, enter the parameter values that you want to use.

3. Use the View Code or Generate Code field (at the bottom of the form) to display the MATLAB code required
to execute this module/pipeline with these parameters.

Using LSIDs from MATLAB
You can use Life Science Identifiers (LSIDs) to identify a module when executing GenePattern code in MATLAB. An
LSID may be submitted in place of the module name to getMethodParameters or runAnalysis. When
providing an LSID to a method in addition to a module name, the LSID alone is used to determine what module to
run. When an LSID is provided that does not include a version, the latest available version of the module identified by
the LSID will be used. If you are unfamiliar with LSIDs and GenePattern versioning, see the Concepts Guide.

% Example using LSIDs from MATLAB
params = getMethodParameters(gp,
'urn:lsid::broad.mit.edu:cancer.software.genepattern.
module.analysis:00026:0'); params.output_file_name = 'transposed.out'
params.input_filename='http://www.broad.mit.edu/mpr/publications/projects/Leuk
emia/ALL_vs_AML_train_set_38_sorted.res'

% transpose the dataset

 17

http://www.broad.mit.edu/cancer/software/genepattern/doc/modules/

transposeResult = runAnalysis(gp,
'urn:lsid::broad.mit.edu:cancer.software.genepattern.module.analysis:00026:0',
params)

Using GenePattern from R
Using R as a GenePattern client allows you to run GenePattern modules and to manipulate and visualize the results
in a powerful, free statistical desktop package that works on most major platforms. Using GenePattern allows you to
invoke methods written in many other languages without having to worry about how to launch them or whether you
are passing incorrect parameters. This section describes how you can use the GenePattern R library to run
GenePattern analyses:

● Getting Started in R

● Accessing GenePattern from R

● Running an R Program

● Using LSIDs from R

Getting Started in R
If you are not familiar with R, see the following resources on the www.r-project.org website:

● An Introduction to R (PDF, approx. 100 pages, 650kB), based on the former "Notes on R", gives an introduction
to the language and how to use R for doing statistical analysis and graphics.

● A draft of the R language definition (PDF, approx. 60 pages, 400kB) documents the language; that is, the objects
that it works on, and the details of the expression evaluation process, which are useful to know when
programming R functions.

● Writing R Extensions (PDF, approx. 85 pages, 500kB) covers how to create your own packages, write R help
files, and the foreign language (C, C++, Fortran, ...) interfaces.

● R Data Import/Export (PDF, approx. 35 pages, 270kB) describes the import and export facilities available either
in R itself or via packages which are available from CRAN.

● R Installation and Administration (PDF, approx. 30 pages, 200kB).

● The R Reference Index (PDF, approx. 2200 pages, 12MB) contains all help files of the R standard and
recommended packages in printable form.

Accessing GenePattern from R
The GenePattern R library allows you to invoke a GenePattern module as if it were a local R method running on your
client and to get back from the module a list of result files. This R library requires the rJava package and is available
on your GenePattern server in both Windows (zip) and Unix (tar.gz) formats.

To download the GenePattern R library to your computer:

1. Start the GenePattern Web Client.

2. Select Downloads>Programming Libraries.

3. Click Windows binary to download the zip or OS X binary to download the tar.gz for the R library.

4. After downloading the zip or tar.gz file, extract it into your R/library directory.

If you cannot add files to your R/library directory (because it is a publicly-shared version and you do not
have appropriate privileges), you can load the GenePattern library by setting the environment variable
R_LIBS=<GenePattern install directory>/R/library in your autoexec.bat, .cshrc,
.bashrc or other shell startup file. R will then load from its usual location, but will also search for and find the
GenePattern library.

Running an R Program
This section explores a simple R program that runs a module, displays the resulting output, and loads it into an R
matrix for further analysis. The included code can be copied and pasted into your R client so that you can try it out,
modify it, and create your own solutions.

The first statements in the application initialize various settings, which you must do once in every application that
accesses GenePattern. You will need to customize the italicized GenePattern servername, username, and

 18

http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-admin.pdf
http://cran.r-project.org/doc/manuals/fullrefman.pdf

password). The gp.login returns a GPServer object which contains the information required for running modules
against a GenePattern server.

Load GenePattern library
library(GenePattern)
username <- "my.username"
password <- "my.password"
servername <- "my.gp.servername"

Obtain a GPServer object which references a specific server and user

gp.server <- gp.login(servername, username, password)

After initializing the required settings, the application runs the PreprocessDataset module to preprocess a dataset.
This example references the dataset using a publicly-accessible URL, but a filename would be equally valid. When
you call an R method, such as run.analysis, the GenePattern library invokes the appropriate module on the
server, passing all of the input parameters and input files. Control returns to your application when the module
completes. (To run a module asynchronously, invoke the method in a separate thread.)

input dataset for preprocess operation
input.ds <-
"http://www.broad.mit.edu/mpr/publications/projects/Leukemia/ALL_vs_AML_train_
set_38_sorted.res"

preprocess the dataset
preprocess.jobresult <- run.analysis(gp.server, "PreprocessDataset",
input.filename=input.ds, output.file="preprocess")

When the module completes, it returns a JobResult object with which you can execute various methods. For
example, you can call a method using a JobResult object to get an R list of the filenames that are the output of the
module. Afterwards, you can download the files or leave them on the server and refer to them by URL. In this
example, we view the results in a heat map:

Obtain the url location of the result and run the visualizer
preprocess.out.file.url <- job.result.get.url(preprocess.jobresult, 0)
run.visualizer(gp.server, "HeatMapViewer",
dataset.filename=preprocess.out.file.url)

In this example, the application downloads the result files and displays the results in a file viewer window, then also
loads them into a matrix so that further manipulation can be performed:

download result files
download.directory <- job.result.get.job.number(preprocess.jobresult)
download.directory <- as.character(download.directory)
preprocess.out.files <- job.result.download.files(preprocess.jobresult,
download.directory)

display the transposed results
transpose.out.files <- as.character(preprocess.out.files)
file.show(preprocess.out.files)

now read the output into a matrix
so we can do further manipulation in R
data <- read.delim(preprocess.out.files, as.is=T, header=F, sep="\t", skip=9,
comment="")
data <- as.matrix(data)
cols <- length(data[1,])
rows <- length(data[,1])

You can combine GenePattern analyses with all of the rich statistical functionality of R. For example, you can use R's
plot and legend methods to create graphic output, output JPEGs of your visualized data using savePlot, save
modified matrices to files using save, or summarize and report on the data using your own code. Just remember:
GenePattern modules create JobResult objects and those objects are available to the R client for processing.

The GenePattern R library also has convenience methods to read and write GenePattern files (such as res, gct, and
cls files), to enable running of multiple modules in parallel, to run modules with input from files that were output from
previous modules without moving them from the server, and other utilities. Even if you choose not to look in the
library, you can extend the techniques shown above to implement your own analyses.

For more information:
 19

● See the Modules page for a list of the GenePattern modules, with links to their documentation.

● Use the Desktop Client or Web Client to generate the R code required to run a module or pipeline:

1. Select a module (or pipeline). The client displays the parameters for the module (pipeline).

2. Optionally, enter the parameter values that you want to use.

3. Use the View Code or Generate Code field (at the bottom of the form) to display the R code required to
execute this module/pipeline with these parameters.

Using LSIDs from R
You can use Life Science Identifiers (LSIDs) instead of module names to identify modules for GenePattern to run. For
R, this is primarily useful when you want to specify a particular version of a module for GenePattern to run. The
easiest way to specify a particular version of a module is to specify the LSID as an argument to an R method such as
run.analysis in place of the GenePattern module name. For example, the following statement invokes version 1 rather
than the latest version of the TransposeDataset module:

preprocess.jobresult <-
run.analysis("urn:lsid:broad.mit.edu:cancer.software.genepattern.module.analys
is:00020:1", input.filename="all_aml_train.res",
output.file="<input.filename_basename>.preprocessed")

If you are unfamiliar with LSIDs and GenePattern versioning, see the Concepts Guide.

 20

http://www.broad.mit.edu/cancer/software/genepattern/doc/modules/

	 Writing Modules for GenePattern
	Writing MATLAB Modules for GenePattern
	Two Approaches: Direct and Compiled
	MATLAB Versions
	Adapting Your MATLAB Code
	Compiling Your MATLAB Code
	Distributing Your MATLAB Code
	Direct Approach Distribution
	Windows Command Line
	Preferred Command Line

	Compiled Approach Distribution
	Preparing the GenePattern Server
	Writing the Launcher Script
	Writing the Module Command Line
	Adding Support Files
	Distribution Licensing

	Example: Deploying a Compiled MATLAB Application
	Writing the M-file
	Adapting the M-file
	Compile the M-file
	Prepare the GenePattern Server
	Windows
	Linux or Mac OS X

	Create the Launcher Script
	Windows
	Linux
	Mac OS X

	Create the GenePattern Module
	Windows
	Linux or Mac OS X

	Save the Module and Test It
	Debugging (Linux Only)

	Using GenePattern from Java
	Getting Started in Java
	GenePattern Java Library
	Running a Java Program
	Using LSIDs from Java

	Using GenePattern from MATLAB
	Getting Started in MATLAB
	GenePattern MATLAB Library
	Running a MATLAB Program
	Using LSIDs from MATLAB

	Using GenePattern from R
	Getting Started in R
	Accessing GenePattern from R
	Running an R Program
	Using LSIDs from R

