
Programmer's Guide
GenePattern provides access to a broad array of computational methods used to analyze genomic data. Its extendable architecture makes it easy for computational

biologists to add analysis and visualization modules, which ensures that GenePattern users have access to new computational methods on a regular basis.

If you are new to GenePattern, begin with the basics:

● The Concepts Guide provides a brief introduction to GenePattern and its primary objects (modules, pipelines, suites). All other GenePattern documentation

assumes that you are familiar with these concepts.

● The Tutorial provides a hands-on introduction to GenePattern.

● This guide assumes that you are a programmer and familiar with GenePattern. As a programmer, you generally work with GenePattern in one of two ways:

● Creating GenePattern modules. Each GenePattern module invokes a program that executes a desired function. You can use any language to

write a program that can then be invoked as a GenePattern module. For more information, see the following sections of this guide:

�❍ Writing Modules for GenePattern: This section provides tips for writing code that will be invoked as a GenePattern module.

�❍ Writing MATLAB Modules for GenePattern: This section describes how to address MATLAB licensing and distribution issues. Read this section if

you are writing MATLAB code that will be invoked as a GenePattern module.

● Accessing GenePattern from Java, MATLAB, or R. GenePattern libraries for these three programming environments make it easy for your

applications to run GenePattern modules and retrieve analysis results. Each library supports arbitrary scripting, access to GenePattern modules via function

calls, and development of new methodologies that combine modules in arbitrarily complex combinations. For more information, see the following sections of

this guide:

�❍ Using GenePattern from Java

�❍ Using GenePattern from MATLAB

�❍ Using GenePattern from R

Writing Modules for GenePattern

Creating a GenePattern module is a two-step process:

1. Use the guidelines provided below to write a program that executes the desired function.

2. Create a GenePattern module that invokes the program that you have written. For more information, see Creating Modules in the GenePattern User

Guide.

When writing a program that will be run as a GenePattern analysis module, keep in mind the following:

● Use the programming language of your choice. You can write the program in the language of your choice. You can use a compiled

language, such as C, to create an executable or you can use a scripting language, such as Perl, to create a script that is run by an interpreter.

● Write messages to standard error and standard output. GenePattern modules are run on the server. The user provides arguments and

retrieves results, but does not interact during module execution. If necessary, write normal output to standard output (stdout) and error messages to

standard error (stderr); avoid writing error messages to standard output. GenePattern captures stdout and stderr in log files, which can be retrieved by the

user.

● Write output files to the current working directory. When a module completes, GenePattern displays the output files that are in the current

working directory. Files written to other locations are not displayed as module output files (otherwise known as analysis result files).

● Read module data files from <libdir>. If your module needs to read from any data files which are part of the module (rather than user input), it

will need to know the directory where the module lives on the server; that is, <libdir>.

http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_concepts.html
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_tutorial.html
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_web_client.html#_Creating_Modules

● Read and write standard GenePattern file formats. When reading and writing data files, you generally want to use the standard GenePattern

file formats, as described in File Formats. This makes it easier for users to analyze their data using a combination of GenePattern modules. If you choose to

use your own unique file formats, be aware that other GenePattern modules will not be able to read those files.

For Java, MATLAB, and R, GenePattern provides libraries that include methods for reading and writing GenePattern files (such as res, gct, and odf files).

These libraries are designed for accessing GenePattern from the Java, MATLAB, and R environments, but are also useful when writing modules to be

invoked by GenePattern. For instructions on downloading the libraries, see Using GenePattern from Java, Using GenePattern from MATLAB, or Using

GenePattern from R.

● Use parameter flags. When designing the program and its command line, use parameter flags (for example, -f input_file) rather than relying on

parameter positions. Parameter flags allow users to build command lines with variable numbers of arguments, which makes it easy to omit optional

parameters. When writing R code, if you have optional input parameters on the command line, you must use named rather than positional parameters in

the command line definition.

For example, to write an R function that takes a filename as input, the main function might be:
myfunction <-

function(...)

{

args <- list(...)

for(i in 1:length(args)) {

flag <- substring(args[[i]], 0, 2)

value <- substring(args[[i]], 3, nchar(args[[i]]))

if(flag=='-i')

{

...

}

The command line for the module would be:
<R2.5> <libdir> myscript.R myfunction -i<input.file>

● Process all parameters as strings. All command line parameters are passed to your code as strings, even if a parameter is apparently numeric. If

your code expects a numeric argument, explicitly convert the string argument to a number; for example, as.integer(arg).

● Avoid absolute pathnames. When writing code to be used with GenePattern, avoid absolute pathnames. For example, in perl, specify the

interpreter on the command line rather than embedding the interpreter in the script; that is, use the command line "perl myscript" rather than

including "#!/usr/bin/perl" as the first line of the myscript.pl file.

● Avoid Windows forbidden filenames. Machines running Windows cannot accept files with the following names, regardless of the file extension:

con, prn, aux, nul, com1, com2, com3, com4, lpt1, lpt2, lpt3. For cross-platform compatibility, avoid files with these names.

● Adapting R code. When you create a module in GenePattern, you specify the command line that invokes the program that performs the desired

function. Generally, the command line includes arguments, such as the parameters for the algorithm and the data file to analyze. For example, the following

command line invokes the myfunc() function in the R script named myscript.R, passing a single parameter, input.filename:

<R> <libdir>myscript.R myfunc <input.filename>

Calling R script from a command line is possible, but generally not useful because you cannot pass arguments to the script. To pass arguments to your R

code, create a function. For example:

myfunc <- function (input.filename)

... (your R-code here)

Visualization modules are similar to analysis modules. The only difference between analysis and visualization modules is that analysis modules run

http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_fileformats.html

on the server machine and visualization modules run on the client machine. Each module is launched in a separate process. An applet is used to launch the

visualization module.

Writing MATLAB Modules for GenePattern

If you are writing MATLAB code to be invoked as a GenePattern module, follow the guidelines in Writing Modules for GenePattern. In addition, for MATLAB code,

you must address licensing and distribution issues, as described in this section:

● Two Approaches: Direct and Compiled

● MATLAB Versions

● Adapting Your MATLAB Code

● Compiling Your MATLAB Code

● Distributing Your MATLAB Code

● Example: Deploying a Compiled MATLAB Application

Two Approaches: Direct and Compiled

You can invoke a MATLAB executable from a GenePattern module using one of two approaches: the direct approach or the compiled approach. Following are brief

descriptions of each approach, including its advantages and disadvantages:

● Direct approach. In the direct approach, the GenePattern module directly invokes the MATLAB executable, which executes your M-code. This

approach is best suited for use on a standalone GenePattern server, where you already have a MATLAB license and you will not redistribute the MATLAB-

based GenePattern modules to other users who do not have their own MATLAB licenses. The advantages to this approach are: it is the simplest way to

getting your M-code running on GenePattern, it can be used for any MATLAB and GenePattern supported platform, and it allows for easier modification of

the M-code files as you modify your analysis. The disadvantages of this approach are: it requires a MATLAB license for each concurrent user on the

GenePattern server machine and, if you change platforms, you must change the command line because different platforms have different methods of

passing arguments to MATLAB.

● Compiled approach. In the compiled approach, you use the MATLAB Compiler to generate a standalone executable; the GenePattern module then

invokes that executable. The advantages to this approach are: it allows redistribution of the module to other GenePattern users who do not have their own

MATLAB license and it can be run on a shared server without needing to get a MATLAB license for each concurrent user. The disadvantages are: it

requires you to have a MATLAB Compiler license, it can be used only on platforms supported by the MATLAB Compiler, it must be compiled separately for

each platform, and the GenePattern server must have the MATLAB Component Runtime (MCR) installed before it can run the compiler-generated

executable.

If you are simply using your M-code on your standalone GenePattern server, the direct approach is simpler; however, if you want to give copies of your M-code to

other people or deploy your M-code on a shared GenePattern server, the compiled approach is preferred. The compiled approach may provide slightly better

performance for fast running modules since the startup delay will be shorter, but the actual execution time will be approximately the same for either approach.

MATLAB Versions

The instructions in this section are based on the following MATLAB versions:

● MATLAB 7.1 (part of Release 14). Earlier versions of MATLAB use a different (deprecated) mechanism for deployment, which is not compatible with the

instructions provided in this guide. For Mac OS X, these instructions were tested using MATLAB 7.2.

● MATLAB Compiler 4.0 or later. The MATLAB Compiler is currently available on Windows, Unix, and Mac OS X; therefore, these are the only platforms on

which you may deploy a compiled MATLAB-based module. For Mac OS X, these instructions were tested using the MATLAB Compiler 4.4.

The MATLAB Compiler generates executables only for the platform on which it is executing. For example, if you create a MATLAB executable on Windows,

the MATLAB-based module that invokes that executable can only be deployed on a GenePattern server running under Windows. Therefore, you need a

MATLAB (and MATLAB Compiler) license for each platform on which you wish to deploy your executable.

Adapting Your MATLAB Code

When you create a module in GenePattern, you specify the command line that invokes the program that performs the desired function. Generally, the command line

includes arguments, such as the parameters for the algorithm and the data file to analyze.

Calling script M-code from a command line is possible, but generally not useful because you cannot pass arguments to the script. To pass arguments to your M-

code, create a no-return entry function to serve as the top level call into MATLAB. The following example defines a no-return entry function that accepts two

parameters:

function analyzeThis (filename, whatToWrite)

... (your M-code here)

Writing Modules for GenePattern provides additional guidelines for writing code that will run as a GenePattern module.

Compiling Your MATLAB Code

If you do not plan to use the compiled M-code approach, skip this section and continue with Distributing Your MATLAB Code.

Compiling your MATLAB M-code into a standalone executable is described in the MATLAB Compiler Documentation. Please refer to this documentation to

understand all of the options available to you. To summarize the simplest case, from within MATLAB, at the MATLAB prompt, execute the following command:

mcc -m analyzeThis

where analyzeThis is the name of your entry function. This command generates the following files in your $MATLAB_ROOT/work directory:

analyzeThis (Linux, Mac OS X) or
analyzeThis.exe (Windows)

Executable file

analyzeThis.ctf Component Framework file
analyzeThis.c (Linux, Windows) C language Source Code
analyzeThis.h (Linux, Windows C Language Header file
analyzeThis_main.c C language Source Code
analyzeThis_mcc_component_data.c C language Source Code

Note: To use the MATLAB compiler on Mac OS X, you must have Xcode 2.2 installed; minimally, the Developer Tools, gcc 4.0, gcc 3.3, Mac OS X SDK, and BSD

SDK. These instructions were tested using Xcode 2.2.1.

Distributing Your MATLAB Code

After writing your MATLAB code, create a GenePattern module that invokes the code that you have written. Creating Modules in the GenePattern User Guide

describes how to create a GenePattern module. This section provides supplemental information for MATLAB:

http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_web_client.html#creating_tasks

● Direct Approach Distribution

● Compiled Approach Distribution

Direct Approach Distribution

Creating Modules describes how to create a GenePattern module that invokes the code that you have written. This section provides additional information that

applies when you are directly calling the MATLAB executable from the GenePattern module:

● Windows Command Line

● Preferred Command Line

Windows Command Line

On Windows, your GenePattern module definition form can contain a simple command line that calls MATLAB with the -r flag to execute your function; for example:

matlab -nosplash -r "analyzeThis <p1> <p2>"

This example invokes MATLAB without the splash screen (-nosplash) and directs it to execute the quoted command, where p1 and p2 are parameters that

you specify in the GenePattern module definition form and that are passed to the MATLAB command line as Strings. MATLAB looks for the function

analyzeThis on the MATLAB path; therefore, it is not necessary to upload the function as a support file, although it is recommended.

To ensure that the GenePattern server can call the MATLAB executable, you typically add the MATLAB directory to your PATH system environment variable.

(Alternatively, you can enter the full path to the MATLAB executable on the command line, but this makes it more difficult to deploy the module on other GenePattern

servers.)

To check that MATLAB is on your path:

1. Open a DOS window.

2. Type matlab and press Enter.

If the MATLAB application starts, MATLAB is on your path.

If MATLAB is not on your path, add it:

1. Select Start>Settings>Control Panel.

2. Double-click System.

3. Select the Advanced tab.

4. Click the Environment Variables button.

5. Select or create the PATH variable.

6. Add the $MATLAB_ROOT/bin directory to the path.

Open a new DOS window and check again that MATLAB is on your path.

Preferred Command Line

http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_web_client.html#creating_tasks

On platforms other than Windows, the execution of the command line differs slightly due to variations in the Java Virtual Machines (VMs) that GenePattern is

running. If you use the simple matlab command, as described for Windows, the Java VMs on these platforms attempt to parse and quote the command line

resulting in MATLAB generating errors in its eval function.

On these platforms, you must use a wrapper Java class to launch MATLAB. This wrapper class also works on Windows and does not rely on the PATH variable,

which makes it the preferred method for implementing the direct approach on any platform.

To use the wrapper Java class:

1. On the GenePattern module definition form, add the runmatlab.jar file as a support file. To request a copy of this file, send e-mail to gp-help (at)

broadinstitute.org; alternatively, the java source code for the RunMatlab wrapper class is included here: RunMatlab.java.

2. Write your command line as follows:

<java> -cp <libdir>runmatlab.jar RunMatlab <libdir> analyzeThis <p1> <p2>

Where analyzeThis is the name of your MATLAB entry function name and <p1> and <p2> are the arguments to the function. The RunMatlab

class ensures that the arguments are correctly written out and calls MATLAB with the -nosplash and -nodisplay arguments.

Compiled Approach Distribution

Creating Modules describes how to create a GenePattern module that invokes the code that you have written. This section provides additional information that

applies when you are compiling your M-code into a standalone executable and invoking that executable from the GenePattern module:

● Preparing the GenePattern Server

● Writing the Launcher Script

● Writing the Module Command Line

● Adding Support Files

● Distribution Licensing

Preparing the GenePattern Server

To run a standalone executable generated by the MATLAB Compiler, the GenePattern server must have the MATLAB Component Runtime (MCR) installed. This is

a collection of shared libraries, which contains the runtime code for MATLAB, that is used by the standalone application. If the GenePattern server has MATLAB

installed, you do not need to install the MCR; it is already installed.

Full details for installing the MCR can be found in the MATLAB Compiler documentation, in the section titled "Deployng Components to Other Machines". To

summarize this documentation, on the GenePattern server machine, you need to run the MCRInstaller:

On Windows, to run the MCRInstaller:

1. Copy <matlabroot>\toolbox\compiler\deploy\win32\MRCInstaller.exe to the server machine.

2. Run MCRInstaller.exe.

On Linux, to run the MCRInstaller:

1. In MATLAB, at the MATLAB prompt, execute the command buildmcr.

2. Copy <matlabroot>/toolbox/compiler/deploy/MCRInstaller.zip to the server machine.

mailto:gp-help@broadinstitute.org
mailto:gp-help@broadinstitute.org
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/linkedFiles/RunMatlab.java
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_web_client.html#creating_tasks
http://www.mathworks.com/access/helpdesk/help/toolbox/compiler/

3. On the server machine, unzip MCRInstaller.zip into a directory (<mcr_root>).

4. Update the dynamic library path for the user running the GenePattern server:

setenv LD_LIBRARY_PATH

<mcr_root>/runtime/glnx86:

<mcr_root>/sys/os/glnx86:

<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:

<mcr_root>/sys/java/jre/glnx86/jre1.4.2/lib/i386:

<mcr_root>/sys/opengl/lib/glnx86:${LD_LIBRARY_PATH}

On Mac OS X, to run the MCRInstaller:

1. In MATLAB, at the MATLAB prompt, execute the command buildmcr.

2. Copy <matlabroot>/toolbox/compiler/deploy/MCRInstaller.zip to the server machine.

3. On the server machine, unzip MCRInstaller.zip into a directory (<mcr_root>).

4. Update the library path for the user running the GenePattern server:

setenv DYLD_LIBRARY_PATH

<mcr_root>/<ver>/runtime/mac:

<mcr_root>/<ver>/sys/os/mac:

<mcr_root>/<ver>/bin/mac:

/System/Library/Frameworks/JavaVM.framework/JavaVM:

/System/Library/Frameworks/JavaEmbedding.framework/JavaEmbedding:

/System/Library/Frameworks/JavaVM.framework/Libraries

setenv XAPPLRESDIR <mcr_root>/<ver>/X11/app-defaults

Writing the Launcher Script

When the MATLAB Compiler generates a standalone executable, it also generates a Component Framework (.ctf) file. The .ctf file must be on the path when you run

the standalone executable. The easiest way to address this requirement is to create a launcher script (.bat or .sh file) that adds the .ctf file to the PATH or LIBPATH

and then runs the standalone executable.

On Windows, for example, to launch the MATLAB executable analyzeThis.exe, create a launcher script, mllaunch.bat, that contains the following

lines:

set LIBDIR=%1

set PATH=%LIBDIR%;%PATH%

analyzeThis %2 %3

On Linux, for example, to launch the MATLAB executable analyzeThis.exe, create a launcher script, mllaunch.sh, that contains the following lines:

#!/bin/csh

export MCR_ROOT=<path where you installed the files from MCRInstaller.zip>

export LD_LIBRARY_PATH=$1:$MCR_ROOT/runtime/glnx86:$MCR_ROOT/sys/os/glnx86:\

$MCR_ROOT/sys/java/jre/glnx86/jre1.4.2/lib/i386/client:\

$MCR_ROOT/sys/java/jre/glnx86/jre1.4.2/lib/i386:\

$MCR_ROOT/sys/opengl/lib/glnx86

export PATH=$1:$PATH

chmod a+x $1/analyzeThis

analyzeThis $2 $3

The chmod line sets the executable permission on the executable file; by default, the GenePattern server does not set this permission for uploaded files.

On Mac OS X, for example, to launch the MATLAB executable analyzeThis.exe, create a launcher script, mllaunch.sh, that contains the following

lines:

#!/bin/sh

export MCR_ROOT=/Volumes/os9/gpserv

export LD_LIBRARY_PATH=$1:/Volumes/os9/matlab7.2/sys/os/mac:

/Volumes/os9/matlab7.2/bin/mac/

export DYLD_LIBRARY_PATH=$LD_LIBRARY_PATH

export PATH=$1:$PATH

chmod a+x $1/writeToFile

writeToFile $2 "$3"

The chmod line sets the executable permission on the executable file; by default, the GenePattern server does not set this permission for uploaded files.

Writing the Module Command Line

On the GenePattern module definition form, write a command line calls the launcher script, passing the <libdir> parameter as the first argument (so that it can be

added to the path).

On Windows, the following command line calls the launcher script, mllaunch.bat:

<libdir>mllaunch.bat <libdir> <param1> <param2>

On Linux or Mac OS X, the following command line calls the launcher script, mllaunch.sh:

sh <libdir>mllaunch.sh <libdir> <param1> <param2>

In both command lines, the first <libdir> sets the path to the mllaunch script. The second <libdir> is passed as the first argument to the script so that the script

can add this directory to the appropriate environment variables. The <param1> and <param2> variables are parameters to the MATLAB application, which you

define in the module definition form and specify in the command line as usual.

Adding Support Files

For the compiled approach, you must specify at least two support files for the MATLAB application: the executable file and .ctf file. If your application requires

additional files for its execution, also add those files as support files.

Distribution Licensing

Should you choose to distribute your MATLAB based module to others, you must ensure you are in compliance with the MATLAB licensing agreement:

http://www.mathworks.com/company/aboutus/policies_statements/agreement.pdf

Following are a few key points for GenePattern developers:

● You may not distribute code that uses MATLAB and that competes with any of The MathWorks products.

● You may not modify or remove any license file included with the MCR Libraries.

● Users of your GenePattern modules must be made aware of the MATLAB license agreement in documentation and accept it before installing your modules.

● Your MATLAB application must have an about box or equivalent "visible" location that includes the legend "MATLAB copyright 1984-yyyy the MathWorks

Inc.", where yyyy is the year you released your module.

Please refer to the MATLAB licensing agreement for exact details. You are responsible for reviewing and complying with the MATLAB software license. The above

summary does not exempt you from this responsibility.

Example: Deploying a Compiled MATLAB Application

This section provides a step-by-step example of deploying a simple M-file application as a GenePattern module on a GenePattern server. Where the instructions are

platform specific, the example shows instructions for Windows, Linux, and Mac OS X.

Writing the M-file

The first step is writing the MATLAB M-file that you want to share. For this example, write a simple application that takes a filename and a String and writes the

String out to a file with the given name. This application consists of the following lines:

% write the variable whatToWrite to a file called filename in the current directory

fid = fopen(filename,'w');

fprintf(fid,'#writing to a file\n\n');

fprintf(fid,whatToWrite);

fclose(fid);

Adapting the M-file

To call the M-file from the command line and pass it parameters, you must turn this script into a no-return function. To do this, add a function definition line at the

start of the M-file and save the file using the name of the function (for example, writeToFile.m).

function writeToFile(filename, whatToWrite)

% write the parameter whatToWrite to a file called filename in the current directory

fid = fopen(filename,'w');

fprintf(fid,'#writing to a file\n\n');

fprintf(fid,whatToWrite);

fclose(fid);

Compile the M-file

Within the MATLAB environment, call the MATLAB Compiler to convert this function into an application:

>> mcc -m writeToFile

Within the current working directory, this creates a number of files, including the following:

● writeToFile.exe (Windows) or

writeToFile (Linux, Mac OS X)

● writeToFile.ctf

Note: To use the MATLAB compiler on Mac OS X, you must have Xcode 2.2 installed; minimally, the Developer Tools, gcc 4.0, gcc 3.3, Mac OS X SDK, and BSD

SDK. These instructions were tested using Xcode 2.2.1.

Prepare the GenePattern Server

Install the MATLAB Component Runtime (MCR) on the GenePattern server, if you have not done so already. If the GenePattern server has MATLAB installed, it also

has the MCR installed.

Windows

To install the MCR:

1. Copy <matlabroot>\toolbox\compiler\deploy\win32\MRCInstaller.exe to the GenePattern server machine.

2. At the DOS prompt, or from Windows Explorer, run the following:

MCRInstaller.exe

Linux or Mac OS X

To install the MCR:

1. Within the MATLAB environment, create the MCRInstaller zip file:
>> buildmcr mcrdir

This creates a directory, mcrdir, beneath the current working directory and creates a file within that directory called MCRInstaller.zip.

2. Copy the zip file to your GenePattern server (if it is a different machine) and install it into a directory. For example, add a directory, matlab, under the

GenePattern server directory and install the library files in MCRInstaller.zip into that directory:

cd GenePatternServer

mkdir matlab

cd matlab

cp <path to mcrinstaller.zip>MCRInstaller.zip .

unzip MCRInstaller.zip

Create the Launcher Script

Create the launcher script that sets the environment variables and then calls the MATLAB application.

Windows

Create the launcher script as a batch file that sets the PATH variable for the environment and then calls the MATLAB application. To do so, in a text editor, create

the following mllaunch.bat file:

set LIBDIR=%1

set PATH=%LIBDIR%;%PATH%

writeToFile %2 %3

Linux

Create the launcher script as an .sh file that sets the PATH and LD_LIBRARY_PATH variables for the environment, ensures that the application is executable, and

then calls the MATLAB application. To do so, in a text editor, create the following mllaunch.sh file:

#!/bin/csh

export MCRROOT=/home/username/GenePatternServer/matlab/v70

export LD_LIBRARY_PATH=$1:$MCRROOT/runtime/glnx86:$MCRROOT/sys/os/glnx86:$MCRROOT/sys/java/ jre/

glnx86/jre1.4.2/lib/i386/client:$MCRROOT/sys/java/jre/glnx86/jre1.4.2/lib/i386:$MCRROOT/ sys/opengl/

lib/glnx86

export PATH=$1:$PATH

chmod a+x $1/testTwo

writeToFile $2 $3

Note that the MCR_ROOT variable is set to the v70 directory, which you created by unzipping MCRInstaller.zip.

Mac OS X

Create the launcher script as an .sh file that sets the LD_LIBRARY_PATH and DYLD_LIBRARY_PATH variables for the environment, ensures that the application is

executable, and then calls the MATLAB application. To do so, in a text editor, create the following mllaunch.sh file:

#!/bin/sh

export MCR_ROOT=/Volumes/os9/gpserv

export LD_LIBRARY_PATH=$1:/Volumes/os9/matlab7.2/sys/os/mac:/Volumes/os9/matlab7.2/bin/mac/

export DYLD_LIBRARY_PATH=$LD_LIBRARY_PATH

export PATH=$1:$PATH

chmod a+x $1/writeToFile

writeToFile $2 "$3"

Create the GenePattern Module

Use GenePattern to create a module that executes the launcher script.

Windows

● For the command line, enter the following:
sh <libdir>mllaunch.bat <libdir> <fname> <txt>

● Define two parameters:

�❍ <fname> for the output file name

�❍ <txt> for the text to write to the file

● Include the following support files:

�❍ mllaunch.bat

�❍ whatToWrite.exe

�❍ whatToWrite.ctf

Linux or Mac OS X

● For the command line, enter the following:

sh <libdir>mllaunch.sh <libdir> <fname> <txt>

● Define two parameters:

�❍ <fname> for the output file name

�❍ <txt> for the text to write to the file

● Include the following support files:

�❍ mllaunch.sh

�❍ whatToWrite

�❍ whatToWrite.ctf

Save the Module and Test It

Save the module and execute it. The module should create two files:

● A stdout file that contains execution information.

● A file with the name and text that you specified.

Debugging (Linux Only)

If the following error appears in the stdout file, you have not correctly set the path to the libraries that you installed from MCRInstaller.zip:

error while loading shared libraries: libmwmclmcrrt.so.7.0: cannot open shared object file: No such file or directory

Double check the path. If it is correct, you may be using a different Unix shell than the one used in this example. Check that the mllaunch.sh file uses the

correct command (export in this example) to set PATH and LD_LIBRARY_PATH.

Using GenePattern from Java

Using Java as a GenePattern client allows you to run GenePattern modules and visualizers from within a Java application. This section describes how you can use

the GenePattern Java library to run GenePattern analyses as easily as calling a routine. It contains the following topics:

● Getting Started in Java

● GenePattern Java Library

● Running a Java Program

● Using LSIDs from Java

Getting Started in Java

If you are not familiar with Java, see the http://java.sun.com website, which provides downloadable programs, samples, tutorials, and book suggestions.

GenePattern Java Library

The GenePattern Java library allows you to invoke a GenePattern module as if it were a local Java method running on your client and to get back from the module a

list of result files. A zip file containing the Java library (and Javadoc that describes the API for accessing the server and running modules) is available on your

GenePattern server.

To download the GenePattern Java library to your computer:

1. Start GenePattern.

2. Select Downloads>Programming Libraries.

3. Under Java, click zip to download the zip file for the GenePattern Java library.

4. After downloading the zip file, unzip it into the directory where you will be doing your Java development.

Running a Java Program

This section explores a simple Java application that preprocesses a dataset and displays it using the HeatMapViewer. The included code can be copied and pasted

into your Java program so that you can try it out, modify it, and create your own solutions. The full source code of the sample application is available here.

The first statements in the application initialize various settings, which you must do once in every application that accesses GenePattern. You will need to customize

the italicized GenePattern server URL and GenePattern user name (typically, your e-mail address) with values appropriate for your GenePattern server.

import org.genepattern.matrix.Dataset;import org.genepattern.client.GPClient;import org.genepattern.

webservice.JobResult;import org.genepattern.webservice.Parameter;import org.genepattern.io.IOUtil;

import java.io.File;

public class MyProgram {

 public static void main(String[] args)

 throws Exception {

 GPClient gpClient=new GPClient("http://localhost:8080",

 "your email address");

After initializing the required settings, the application runs the PreprocessDataset module to preprocess a dataset. This example references the dataset using a

publicly-accessible URL, but a filename would be equally valid. When you invoke the runAnalysis method, the GenePattern library invokes the appropriate

module on the server, passing all of the input parameters and input files. Control returns to your application when the module completes. (To run a module

asynchronously, invoke the runAnalysisNoWait method or use the runAnalysis method in a separate thread.)

http://java.sun.com/
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/linkedFiles/MyProgram.java

 String inputDataset=

 "ftp://ftp.broadinstitute.org/pub/genepattern/all_aml/all_aml_train.res";

 JobResult preprocess=gpClient.runAnalysis("PreprocessDataset",

 new Parameter[] {

 new Parameter("input.filename", inputDataset)

 });

When the module completes, you can query the JobResult object for an array of filenames that are the output from the module. You can download the result

files or leave them on the server and refer to them by URL. Referring to result files by URL is especially useful for intermediate results. In this example, the

JobResult object named preprocess contains a list of filenames (of length 1, in this case), which the application displays in a heat map:

 // view results in a HeatMapViewer visualizer

 gpClient.runVisualizer("HeatMapViewer",

 new Parameter[] {

 new Parameter("dataset", preprocess.getURL().toString())

 });

The last statements in the application download the preprocessed data and load it into a matrix for further analysis:

 String downloadDirName=String.valueOf(preprocess.getJobNumber());

 // download result files

 File[] outputFiles = preprocess.downloadFiles(downloadDirName);

 // load data into matrix for further manipulation

 Dataset dataset=

 IOUtil.readDataset(outputFiles[].getPath());

 }

}

You can combine GenePattern analyses with any capabilities that the Java environment has to offer. Use Java's 2-D and 3-D graphics libraries to create graphic

output, or summarize and report on the data using your own code. The basic idea to remember is that GenePattern modules create result files and those files are

available to the Java application for processing.

For more information:

● See the Modules page for a list of the GenePattern modules, with links to their documentation.

● Use GenePattern to generate the Java code required to run a module or pipeline:

1. Select a module (or pipeline). GenePattern displays the parameters for the module (pipeline).

2. Optionally, enter the parameter values that you want to use.

3. Use the View Code or Generate Code field (at the bottom of the form) to display the Java code required to execute this module/pipeline with these

parameters.

Using LSIDs from Java

Life Science Identifiers (LSIDs) can be used instead of module names to identify modules for GenePattern to run. An LSID may be submitted in place of the module

name in the methods runAnalysis and runVisualizer. When an LSID is provided that does not include a version, the latest available version of the

module identified by the LSID will be used. If a module name is supplied, the latest version of the module with the nearest authority is selected. The nearest authority

is the first match in the sequence: local authority, Broad authority, other authority.

If you are unfamiliar with LSIDs and GenePattern versioning, see the Concepts Guide.

Using GenePattern from MATLAB

Using MATLAB as a GenePattern client allows you to run GenePattern modules and to manipulate and visualize the results in a powerful, commercial technical

computing application that works on most major platforms. Using GenePattern allows you to invoke methods written in many other languages without having to worry

about how to launch them. This section describes how you can use the GenePattern MATLAB library to run GenePattern analyses:

● Getting Started in MATLAB

● GenePattern MATLAB Library

● Running a MATLAB Program

● Using LSIDs from MATLAB

Getting Started in MATLAB

Resources and documentation for MATLAB are available at http://www.mathworks.com/.

GenePattern MATLAB Library

The GenePattern MATLAB library allows you to invoke a GenePattern module as if it were a local MATLAB function running on your client and to get back from the

module a list of result files. A zip file containing the MATLAB library is available on your GenePattern server.

To download the GenePattern MATLAB library to your computer:

1. Start GenePattern.

2. Select Downloads>Programming Libraries.

http://www.broadinstitute.org/cancer/software/genepattern/modules
http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_concepts.html
http://www.mathworks.com/

3. Under MATLAB, click zip to download the zip file for the GenePattern MATLAB library.

4. After downloading the zip file, unzip it into your MATLAB7/toolboxes directory. If you do not have permission to put files in that directory, unzip into

any other directory.

5. After downloading and unzipping the files, add the directories to your MATLAB path:

1. At a MATLAB prompt, open the pathtool:
>>pathtool

2. Use the MATLAB pathtool to add the GenePatternServer and GenePatternFileSupport directories, with subfolders, to the

MATLAB search path.

Note: MATLAB 7.0.4 (R14SP2) and later use Java Virtual Machine (JVM) 1.5. If you are using an earlier version of MATLAB, you must change the JVM that

MATLAB is using to JVM 1.5. For instructions, see http://www.mathworks.com/support/solutions/data/1-1812J.html?solution=1-1812J.

Running a MATLAB Program

This section explores a simple MATLAB program that runs a module, displays the resulting output, and loads it into a MATLAB matrix for further analysis. The

included code can be copied and pasted into your MATLAB client so that you can try it out, modify it, and create your own solutions.

The first statements in the application initialize various settings, which you must do once in every application that accesses GenePattern. You will need to customize

the italicized GenePattern server URL, GenePattern user name (typically, your e-mail address) and password (if required) with values appropriate for your

GenePattern server.

% Create a GenePattern server proxy instance

gp = GenePatternServer('http://localhost:8080','my.email@my.domain', 'mypassword');

After initializing the required settings, the application runs the TransposeDataset module to transpose a dataset. This example references the dataset using a

publicly-accessible URL, but a filename would be equally valid. As shown below, you can call the GenePattern methods directly or by calling the runAnalysis

method. When you call a GenePattern method, such as TransposeDataset, the GenePattern library invokes the module on the server, passing all of the

input parameters and input files. Control returns to your application when the module completes. (To run a module asynchronously, invoke the method in a separate

thread.)

% input dataset for transpose operation

params.output_file_name = 'transposed.out'

params.input_filename='http://www.broadinstitute.org/mpr/publications/projects/Leukemia/

ALL_vs_AML_train_set_38_sorted.res'

% transpose the dataset

transposeResult = gp.TransposeDataset(params)

% alternate call to transpose the dataset

transposeResult = runAnalysis(gp, 'TransposeDataset', params)

When the module completes, it returns a MATLAB structure that contains a list of filenames that are the output from the module. In this example,

transposeResult is a structure with a list of filenames (of length 1, in this case). The application displays the results in a file viewer window and also loads

them into a matrix so that further manipulation can be performed:

% display the transposed results

edit 'transposed.out.gct'

http://www.mathworks.com/support/solutions/data/1-1812J.html?solution=1-1812J

% now read the output into a matrix

% so we can do further manipulation in MATLAB

myData = loadGenePatternExpressionFile('transposed.out.gct')

You can combine GenePattern analyses with all of the rich functionality of MATLAB. For example, you can use MATLAB's plotting methods to create graphic output,

save modified matrices to files using save, or summarize and report on the data using your own code. The basic idea to remember is that GenePattern modules

create result files and those files are available to the MATLAB client for processing.

For a list of the GenePattern modules available on your server, run the listMethods function on your GenePatternServer object. To view the names of

the input parameters for a module, use the describeMethod function on your GenePatternServer object, passing it the module name.

% display the available GenePattern modules

listMethods(gp)

% now look at the parameters for the TransposeDataset module

describeMethod(gp, 'TransposeDataset')

Alternatively, to get the parameters with their default values filled in, use the getMethodParameters function of the GenePatternServer object. This

returns a MATLAB structure with named elements for each parameter, filled in with the default value if one exists. After filling in the missing parameters and

overriding defaults if desired, this structure can then be passed on to the runAnalysis method.

% display the available GenePattern modules

params2 = getMethodParameters(gp, 'TransposeDataset')

params2.input_filename='http://www.broadinstitute.org/mpr/publications/projects/Leukemia/

ALL_vs_AML_train_set_38_sorted.res'

% transpose the dataset

transposeResult = gp.TransposeDataset(params2)

The GenePattern MATLAB library also has convenience methods to read and write GenePattern files (such as res, gct, and odf files). Even if you choose not to look

in the library, you can extend the techniques shown above to implement your own analyses.

For more information:

● See the Modules page for a list of the GenePattern modules, with links to their documentation.

● Use GenePattern to generate the MATLAB code required to run a module or pipeline:

1. Select a module (or pipeline). GenePattern displays the parameters for the module (pipeline).

2. Optionally, enter the parameter values that you want to use.

3. Use the View Code or Generate Code field (at the bottom of the form) to display the MATLAB code required to execute this module/pipeline with

these parameters.

http://www.broadinstitute.org/cancer/software/genepattern/modules

Using LSIDs from MATLAB

You can use Life Science Identifiers (LSIDs) to identify a module when executing GenePattern code in MATLAB. An LSID may be submitted in place of the module

name to getMethodParameters or runAnalysis. When providing an LSID to a method in addition to a module name, the LSID alone is used to

determine what module to run. When an LSID is provided that does not include a version, the latest available version of the module identified by the LSID will be

used. If you are unfamiliar with LSIDs and GenePattern versioning, see the Concepts Guide.

% Example using LSIDs from MATLAB

params = getMethodParameters(gp, 'urn:lsid::broadinstitute.org:cancer.software.genepattern.

module.analysis:00026:0'); params.output_file_name = 'transposed.out'

params.input_filename='http://www.broadinstitute.org/mpr/publications/projects/Leukemia/

ALL_vs_AML_train_set_38_sorted.res'

% transpose the dataset

transposeResult = runAnalysis(gp, 'urn:lsid::broadinstitute.org:cancer.software.genepattern.module.

analysis:00026:0', params)

Using GenePattern from R

Using R as a GenePattern client allows you to run GenePattern modules and to manipulate and visualize the results in a powerful, free statistical desktop package

that works on most major platforms. Using GenePattern allows you to invoke methods written in many other languages without having to worry about how to launch

them or whether you are passing incorrect parameters. This section describes how you can use the GenePattern R library to run GenePattern analyses:

● Getting Started in R

● Accessing GenePattern from R

● Running an R Program

● Using LSIDs from R

Getting Started in R

If you are not familiar with R, see the following resources on the www.r-project.org website:

● An Introduction to R (PDF, approx. 100 pages, 650kB), based on the former "Notes on R", gives an introduction to the language and how to use R for doing

statistical analysis and graphics.

● A draft of the R language definition (PDF, approx. 60 pages, 400kB) documents the language; that is, the objects that it works on, and the details of the

expression evaluation process, which are useful to know when programming R functions.

● Writing R Extensions (PDF, approx. 85 pages, 500kB) covers how to create your own packages, write R help files, and the foreign language (C, C++,

Fortran, ...) interfaces.

● R Data Import/Export (PDF, approx. 35 pages, 270kB) describes the import and export facilities available either in R itself or via packages which are

available from CRAN.

● R Installation and Administration (PDF, approx. 30 pages, 200kB).

● The R Reference Index (PDF, approx. 2200 pages, 12MB) contains all help files of the R standard and recommended packages in printable form.

Accessing GenePattern from R

The GenePattern R package allows you to invoke a GenePattern module as if it were a local R method running on your client and to get back from the module a list

http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_concepts.html
http://www.r-project.org/
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-lang.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-admin.pdf
http://cran.r-project.org/doc/manuals/fullrefman.pdf

of result files. The package requires R version 2.4.1 or greater and the rJava package. The package can be downloaded from your GenePattern server in Windows(.

zip), source (.tar.gz), and Mac OS X (.tgz) formats.

To download the GenePattern R package to your computer:

1. Start GenePattern.

2. Select Downloads>Programming Libraries.

3. Click appropriate link to download the GenePattern R package for your operating system.

4. Install the package into your R environment by using the install.packages command:

install.packages("full-path-to-GenePattern-R-package", repos=NULL)

Note: If you are using a version of R which you cannot modify (because it is a publicly-shared version and you do not have appropriate privilege), you can have it

load the GenePattern library by setting the environment variable R_LIBS=<GenePattern install directory>/R/library in your autoexec.bat, .cshrc, .bashrc or other shell

startup file. R will then load from its usual location, but will also search for and find the GenePattern library from your installation.

Running an R Program

This section explores a simple R program that runs a module, displays the resulting output, and loads it into an R matrix for further analysis. The included code can

be copied and pasted into your R environment so that you can try it out, modify it, and create your own solutions.

The first statements in the application initialize various settings, which you must do once in every application that accesses GenePattern. You will need to customize

the italicized GenePattern server URL, GenePattern user name (typically, your e-mail address), and password with values appropriate for your GenePattern

server. The gp.login method returns a GPClient object that contains the information required for running modules on a GenePattern server.

Load GenePattern package

library(GenePattern)

username <- "your email address"

password <- "your password"

servername <- "http://localhost:8080"

Obtain a GPClient object which references a specific server and user

gp.client <- gp.login(servername, username, password)

After initializing the required settings, the application runs the PreprocessDataset module to preprocess a dataset. This example references the dataset using a

publicly-accessible URL, but a filename would be equally valid. When you call an R method, such as run.analysis, the GenePattern package invokes the

appropriate module on the server, passing all of the input parameters and input files. Control returns to your application when the module completes. (To run a

module asynchronously, use the method runAnalysisNoWait.)

input dataset for preprocess operation

input.ds <- "ftp://ftp.broadinstitute.org/pub/genepattern/all_aml/all_aml_train.res"

preprocess the dataset

preprocess.jobresult <- run.analysis(gp.client, "PreprocessDataset", input.filename=input.ds)

When the module completes, it returns a JobResult object with which you can execute various methods. For example, you can call a method using a JobResult

object to get an R list of the filenames that are the output of the module. Afterwards, you can download the files or leave them on the server and refer to them by

URL. In this example, we view the results in a heat map:

Obtain the url location of the result and run the visualizer

preprocess.out.file.url <- job.result.get.url(preprocess.jobresult, 0)

run.visualizer(gp.client, "HeatMapViewer", dataset=preprocess.out.file.url)

In this example, the application downloads the result file and displays the results in a file viewer window, then also loads the data into a matrix so that further

manipulation can be performed in R:

download result files

download.directory <- job.result.get.job.number(preprocess.jobresult)

download.directory <- as.character(download.directory)

preprocess.out.files <- job.result.download.files(preprocess.jobresult, download.directory)

display the preprocessed result

preprocessed.out.file <- as.character(preprocess.out.files[1])

file.show(preprocessed.out.file)

now read the output into a matrix

so we can do further manipulation in R

data <- read.dataset(preprocessed.out.file)

You can combine GenePattern analyses with all of the rich statistical functionality of R. For example, you can use R's plot and legend methods to create graphic

output, output JPEGs of your visualized data using savePlot, save modified matrices to files using save, or summarize and report on the data using your own code.

Just remember: GenePattern modules create JobResult objects and those objects are available to the R client for processing.

The GenePattern R package also has methods to read and write GenePattern files (such as res, gct, and cls files), to enable running of multiple modules in parallel,

to run modules with input from files that were output from previous modules without moving them from the server, and other utilities. Even if you choose not to look in

the library, you can extend the techniques shown above to implement your own analyses.

For more information:

● See the Modules page for a list of the GenePattern modules, with links to their documentation.

● Use GenePattern to generate the R code required to run a module or pipeline:

1. Select a module (or pipeline). GenePattern displays the parameters for the module (pipeline).

2. Optionally, enter the parameter values that you want to use.

3. Use the View Code or Generate Code field (at the bottom of the form) to display the R code required to execute this module/pipeline with these

parameters.

Using LSIDs from R

http://www.broadinstitute.org/cancer/software/genepattern/modules

You can use Life Science Identifiers (LSIDs) instead of module names to identify modules for GenePattern to run. For R, this is primarily useful when you want to

specify a particular version of a module for GenePattern to run. The easiest way to specify a particular version of a module is to specify the LSID as an argument to

an R method such as run.analysis in place of the GenePattern module name. For example, the following statement invokes version 1 rather than the latest version of

the PreprocesDataset module:

preprocess.jobresult <- run.analysis(gp.server, "urn:lsid:broadinstitute.org:cancer.software.genepattern.module.analysis:00020:1", input.filename=input.ds)

If you are unfamiliar with LSIDs and GenePattern versioning, see the Concepts Guide.

Documentation Update History

Version Release date Comments

3.2.1 November 2009 Minor updates to Running a MATLAB Program and Accessing GenePattern from R.

3.1 December 2007 Updated Using GenePattern from Java and Using GenePattern from R.

3.0 May 11, 2007 Updated Using GenePattern from R.

3.0 April 2007 GenePattern 3.0 Release

http://www.broadinstitute.org/cancer/software/genepattern/tutorial/gp_concepts.html

	GenePattern: Programmer's Guide
	Writing Modules for GenePattern
	Writing MATLAB Modules for GenePattern
	Two Approaches: Direct and Compiled
	MATLAB Versions
	Adapting Your MATLAB Code
	Compiling Your MATLAB Code
	Distributing Your MATLAB Code
	Example: Deploying a Compiled MATLAB Application

	Using GenePattern from Java
	Getting Started in Java
	GenePattern Java Library
	Running a Java Program
	Using LSIDs from Java

	Using GenePattern from MATLAB
	Getting Started in MATLAB
	GenePattern MATLAB Library
	Running a MATLAB Program
	Using LSIDs from MATLAB

	Using GenePattern from R
	Getting Started in R
	Accessing GenePattern from R
	Running an R Program
	Using LSIDs from R

